

Menoken Farm

Rooted in Change

A Journey of Soil, People, and Possibility at Menoken Farm

By: Jay Fuhrer | Conservationist / Retired NRCS / USDA | Bismarck, ND - USA
Burleigh County Soil Conservation District

State Of Agriculture In The Great Plains

The last 5 Decades

- Soil Conservation Service
- HEL and Wetland Inventories Plus CRP
- First Office Computers (1983). Cell phones late 80's.
- Full Tillage Cropping Systems – Start of Concord System
- Early No-till Attempts Failed – Lack of Diversity
- Season Long Grazing Was Dominant
- Built Structures – Waterways, Diversions, Land Leveling (symptoms)
- No Cover Crops
- Dominant Crop – Spring Wheat
- Breaking Native Grasslands Ongoing
- Carbon?
- **Erosion Control – Poor**

Conservation Tillage
1980 - 1992

George H Bush 1989-1993

Bill Clinton 1993-2001

- Soil Conservation Service to NRCS
- First Presidential email - 1994
- Start of No-till Systems With Diversity – 1993
- Tillage Was Still The Dominant Cropping System
- Stopped Building Structures On Cropland By End of 90's
- Cover Crops – First Producer 1-3 Species
- Major Crop Spring Wheat – Corn & Beans (GMO Mid 90's)
- Formed a Soil Health Team
- Grazing Systems With 10+ Paddocks
- Breaking Native Grassland Ongoing
- Started Monitoring Carbon
- **Erosion Control - Fair**

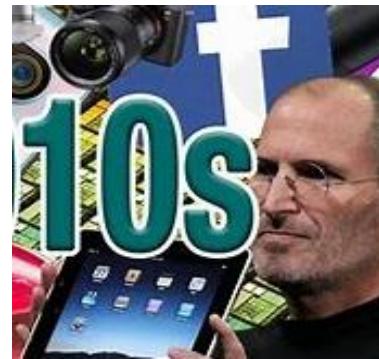
No-Till
1993 - 2005

- Writing Soil Health Principle Descriptions
- Cover Crops – 2006 First Poly Culture Mixes
- Cover Crops Become Common On Mixed Operations
- Cover Crops Become The Bridge - Cropland & Grassland
- Spring Wheat Still Dominant Crop – Corn & Beans Gain Big
- Menoken Farm Established - 2009
- YouTube - 2005
- Golden Era of No-till Crop Diversity – Major System
- Grazing Systems With High Recovery 40+ Paddocks
- Breaking Native Grasslands Ongoing
- Carbon – Building Soil Aggregates Deep
- **Erosion Control - Good**

Soil Health
2006 - 2014

Barack Obama 2009 – 2017
Donald Trump 2017 - 2021

- Rewriting Soil Health Principle Descriptions
- Soybean Acres Rival Spring Wheat Acres
- Salinity
- Wind Erosion on No-till Acres (No-till Is Not Enough)
- Cover Crops - Planting Green With Soybean
- Direct Marketing
- Stacking Enterprises
- Grazing Systems With Infinite Pasture/Recovery Time
- Grazing Systems Include Cover Crop Mixtures
- Breaking Native Grasslands Ongoing
- The 4 Parts Of Carbon
- **Erosion Control – Fair to Good**


Regeneration
2015 - Present

Joseph Biden 2021 – 2024
Donald Trump 2025 - Present

- Rewriting Soil Health Principle Descriptions (yes, again!)
- Red Trail Ethanol Injects CO2 Emissions, First In Nation
- Summit PLine CO2 Proposal – 5 States/32 Ethanol Plants
- Soybean Dominant Crop
- Salinity Increasing
- Gardening – High Tunnels – Greenhouses
- Food Security and Nutrient Density
- Breaking Native Grassland Ongoing – 58,737 Easement Acs
- Future of Carbon - Nestle, General Mills, Pepsico, Walmart
- Regeneration Traction – Carbon, Cover Crops, No-till, Etc
- **Erosion Control – Poor to Fair**

Regeneration
2015 - Present

Northern Plains

Decade

Erosion Control Grade

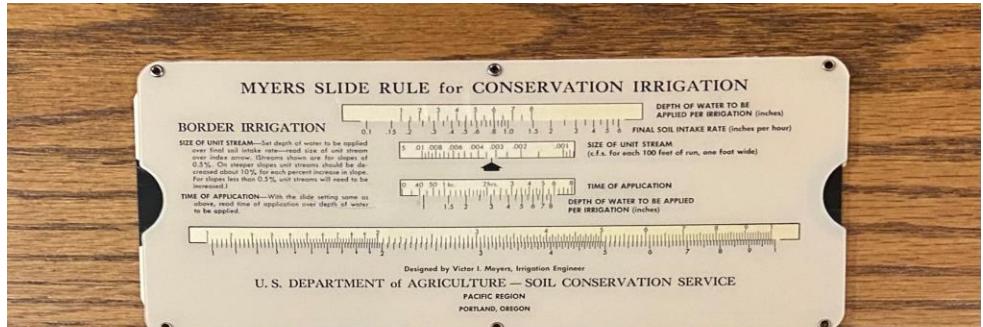
1980's **Poor**

1990's **Fair**

2000's **Good**

2010's **Fair to Good**

2020's **Poor to Fair**


Poor – Fair – Good - Excellent

The Start

What I Started With

Versus

What I Needed

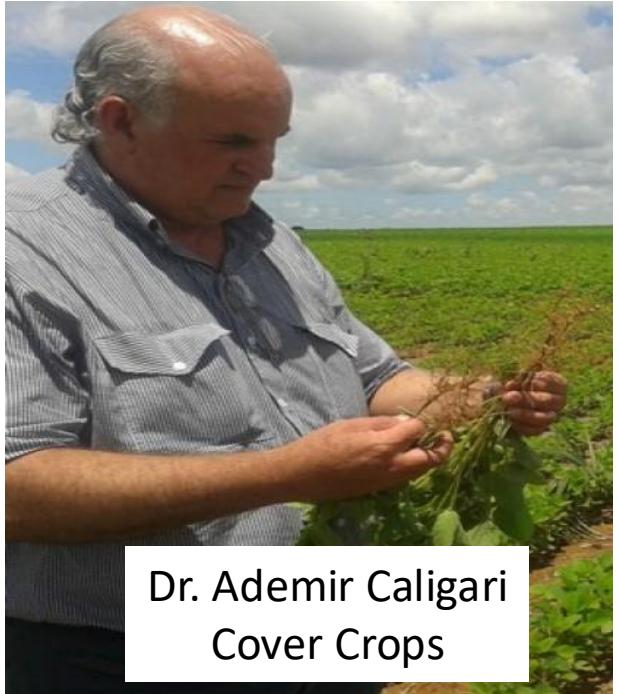
Better Understanding of the Conservation Planning 9 Step Planning Process

After 10 Years Of Treating Symptoms

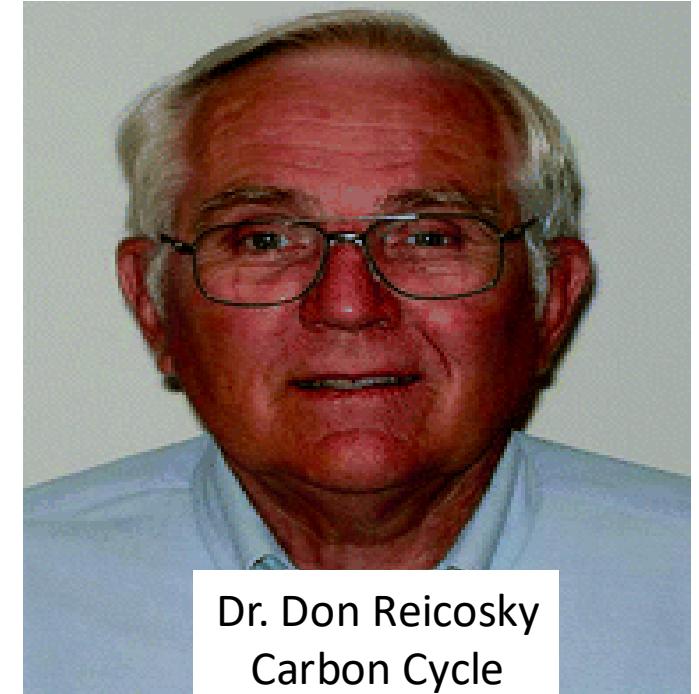
Burleigh County Soil Health Team

Team Members

Dr. Dwayne Beck
Systems Approach to
No-till & Resource Mgt

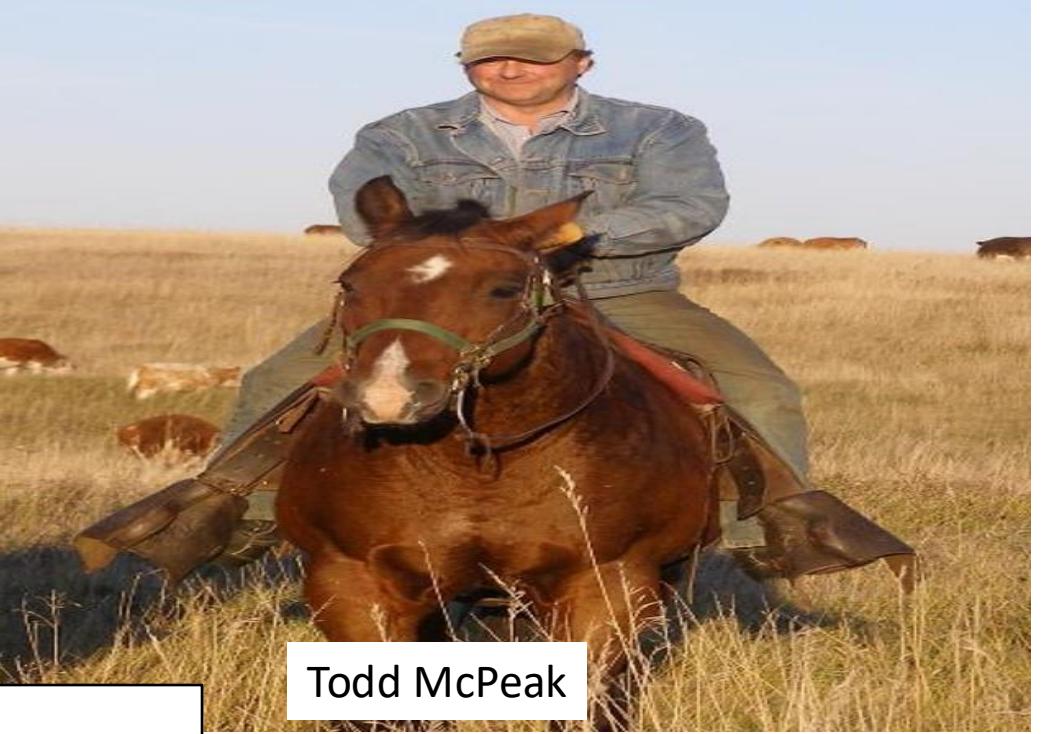

Dr. James White
Rhizophagy

Dr Elaine Ingham


Dr. Kris Nichols
Soil Food Web

Dr. Ademir Caligari
Cover Crops

Dr. Jonathan Lundgren
Entomology



Dr. Don Reicosky
Carbon Cycle

Mentors

Ken Miller

Todd McPeak

Practitioners

Gabe Brown

Jerry Doan

Going Forward – Where To Start – Top 5 No Particular Order

1. Monitoring
2. Carbon Stewardship
3. 17 Elements A Green Plant Uses
4. Carbon, Hydrogen, and Oxygen
5. Soil Health Principle Descriptions

1. Monitoring

(1) Total Mineral

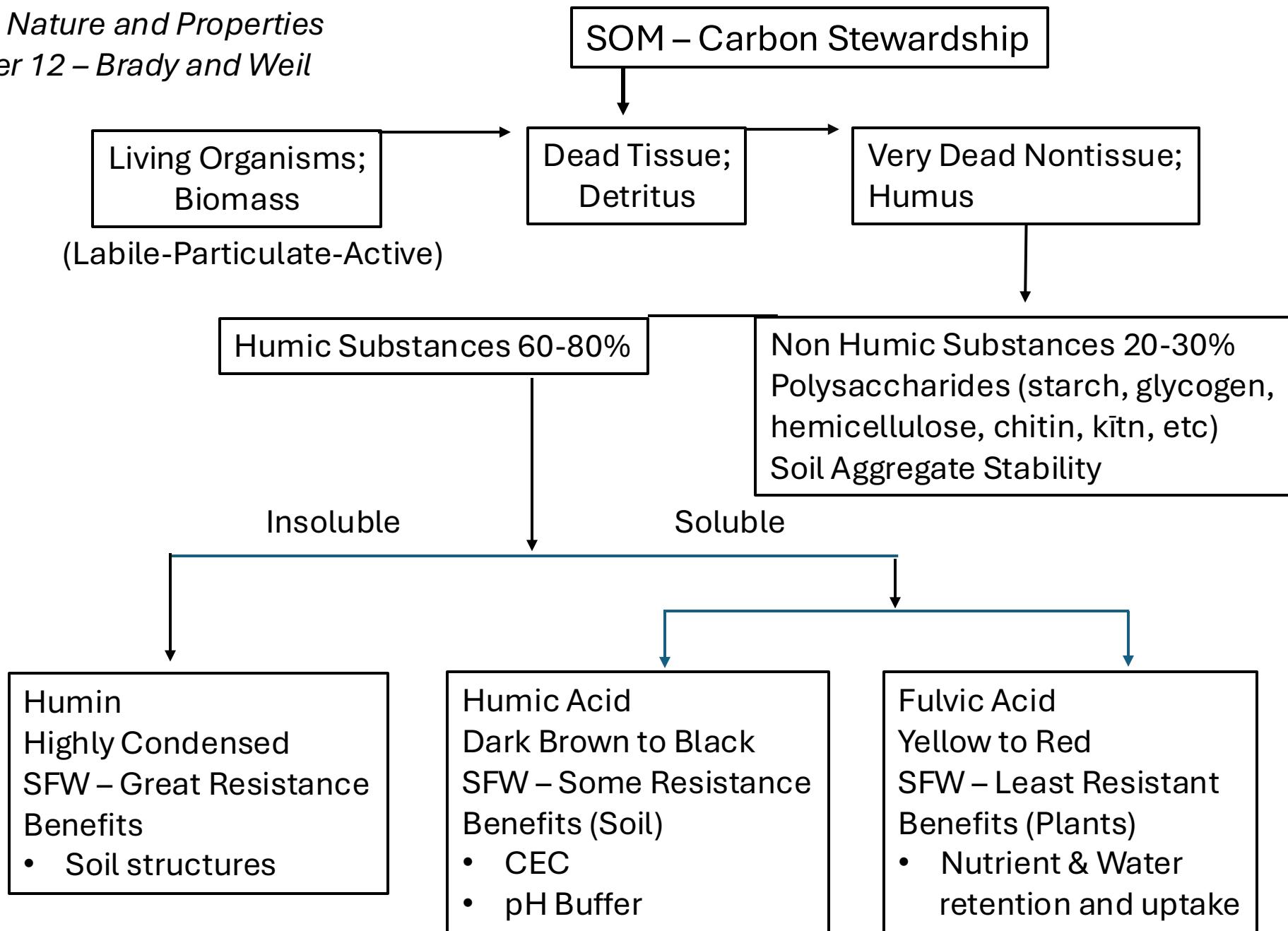
(2) Soil Health Assessment (Inorganic & Organic)

(3) Leaf Analysis

(4) PLFA (Soil Food Web)

(5) VESS

Structure quality	Size and appearance of aggregates	Visible porosity and roots	Appearance after break-up of wet soils	Appearance after break-up of semi-dry soils	Distinguishing feature	Appearance and description of natural or reduced fragment of ~ 1.5 cm diameter
Soil Fribble	Mostly < 5 mm after churning	Highly porous Roots throughout the soil				
Aggregates mostly crumble with fingers		Roots throughout the soil				
Soil Impact	A mixture of porous, rounded aggregates (more than 30% are > 1 cm in diameter) and porous aggregates (less than 30% are > 1 cm in diameter)	Most aggregates are porous Roots throughout the soil				
Aggregates break with one hand						
Soil Firm	A mixture of porous aggregates from 0.5 to 1.5 cm in diameter (more than 30% are > 1 cm in diameter) and porous aggregates (less than 30% are > 1 cm in diameter)	Macropores and cracks present Porosity and roots present				
Most aggregates break with one hand						
Soil Compact	Mostly large > 10 cm diameter aggregates and angular and non-porous	Few macropores Porosity also present. Many small pores and around aggregates				
Requires considerable effort to break apart and crumble						
Soil Very compact	Mostly large > 10 cm diameter aggregates and angular and non-porous	Very low porosity and many angular zones Few macropores and restricted to cracks				
Cannot be broken up						


2. Carbon Stewardship

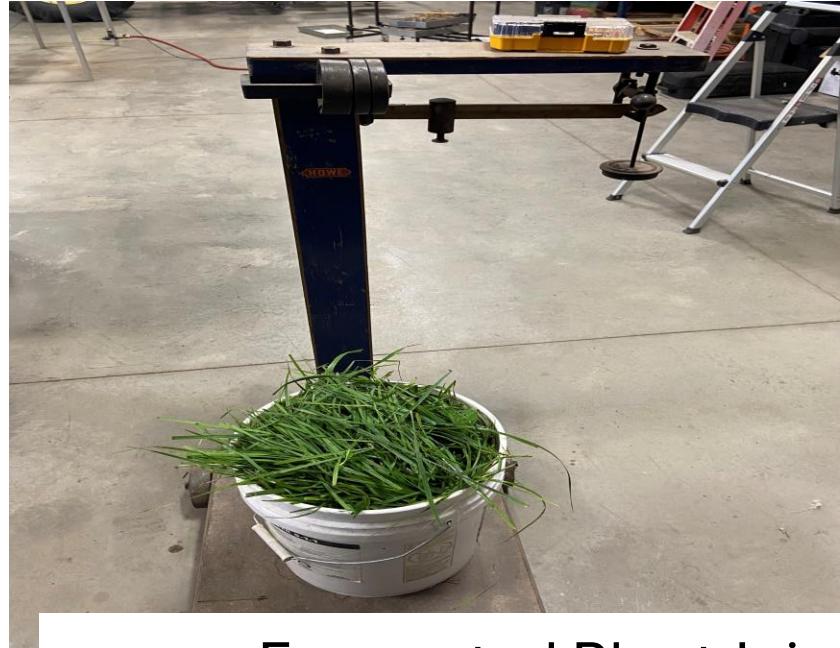
Soil Carbon Sequestration vs Soil Carbon Stewardship

Soil carbon stewardship: Thinking in circles

H. Henry Janzen

Soil Organic Matter “I favour the most inclusive definition, whereby SOM encompasses all C – containing material, originally of photosynthetic origin, whether living or dead, within the soil or lying upon its surface.” Henry Janzen

3. 17 Elements


C B HOPKiNS CaFe
Closed Monday Morning and Night
See you Zoon, the Mg

“Of the 92 naturally occurring chemical elements, 17 have been shown to be essential elements, meaning that plants cannot grow and complete their life cycles without them.”

Source: The Nature and Properties of Soils, Table 1.1

Pigweed
Kochia
Dandelion
Cereal Rye
Lettuce
Tomato
Cabbage
Pasture
Bone
Oyster Shell
Alfalfa

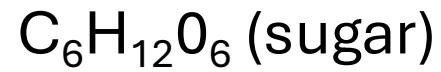
The Regenerative Grower's
Guide to Garden Amendments
By Nigel Palmer

Fermented Plant Juice and AC Vinegar Extracts

Menoken Farm – Fermented Plant Juice and Vinegar Bone Extraction - 2025

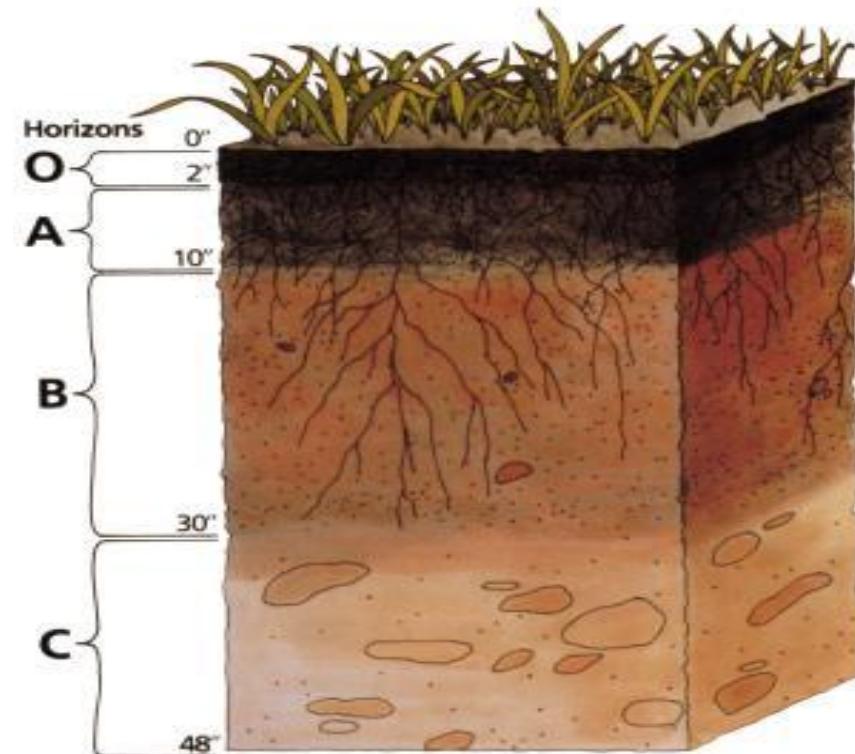
4.

Macronutrients		Micronutrients
Most from air and water	Mostly from soil solids	From soil solids
Carbon - C	Cations: (+)	Cations: (+)
Hydrogen - H	Calcium - Ca	Copper - Cu
Oxygen - O	Magnesium - Mg	Cobalt - Co
	Nitrogen (Ammonium) NH4	Iron - Fe
	Potassium - K	Manganese - Mn
		Nickel - Ni
	Anions: (-)	Sodium - Na
	Nitrogen (Nitrate) NO3	Zinc - Zn
	Phosphorous - P	
	Sulfur - S	Anions: (-)
	Silicon - Si	Boron - B
		Chlorine - Cl
		Molybdenum - Mo


Source: The Nature and Properties of Soils, Table 1.1

Carbon – Hydrogen - Oxygen

O_2
 CO_2
 H_2O
 $C_6H_{12}O_6$
 H_2CO_3


Oxygen
Carbon Dioxide
Water
Sugar
Carbonic Acid

- Sunlight (energy)
- Chlorophyll (green plant)
- CO_2 (atmosphere)
- H_2O (soil)
- Giving off oxygen O_2
- Giving off water vapor H_2O

- Soil Function
- CO_2
- H_2O

Potential Hydrogen References

- The Ideal Soil v2.0 “perfect plant sap and soil pH is 6.4
- GrowerExperts “most plants need a pH of 6.5-7.0
- Michigan State University

Lowering **High pH** (alkaline/basic)

- Carbon Sources – Compost, Manure, Sugar, Molasses, Residue, Leonardite
- Commercial Fertilizers - Nitrification
- Elemental Sulphur – Sulphuric Acid dense soil
- Acidifying Mulches – Peat Moss, Pine Needles, Oak Leaves
- Cover Crops – ie Cereal Rye
- (2" Depth-Brown 7.1 vs Green 6.6)
- Humic Acid (buffers)
- Used Coffee Grounds – 6.8 pH
- Coffee – 4.5 pH
- White Vinegar – 2.4 (1 C/Gal of Water)

Raising **Low pH** (acidic)

- Lime (calcium carbonate)
- Potassium Carbonate (drip Ir)
- Wood Ash
- Baking Soda - Gentle
- Eggshells – 2 Lbs/Sq Ft

Lime sources

- Dolomitic
- Oyster Shell (39% Ca, 55% Ca + 10% O Matter)
- Agricultural -(Beet Lime)
- Hydrated
- Ground

Note: Gypsum (calcium sulfate) does not significantly alter pH. It does improve soil structure, particularly in sodic and heavy clay soils

5. Soil Health Principle Descriptions

Armor – Minimize Disturbance – Diversity – Continual Live Plant – Livestock Integration

Indicators

Bare Soil

Landscapes

Armor

What's at the bottom
of your 4' profile?

Menoken Farm

Prior to the Menoken Farm
5 Acre Farm Plots 1990 - 2000
Conservation Demonstration Plot 1999 - 2013

What Does The Menoken Farm Consist Of?

1. Local Indigenous Language: You reap what you sow
2. Soil health principles as the operating foundation for all land uses
3. Cropland fields each 12 acres in size
4. Outdoor Garden
5. High Tunnel Garden
6. Beetle/Pollinator Bank
7. Turned and Static Compost
8. Tree Arboretum
9. Rain Garden
10. Learning Center
11. Video Library www.menokenfarm.com
12. YouTube: Menoken Farm

Menoken Farm 2025

Conservation is the Foundation of Agriculture

Self Education

- A Soil Owner's Manual: Jon Stika
- The Buffalo Harvest: Frank Mayer
- Sapiens: Yuval Noah Harari
- Grow Your Soil: Diane Miessler
- Growing A Revolution: David Montgomery
- Dirt to Soil: Gabe Brown
- The Light Eaters: Zoe Schlanger
- The Soil Will Save Us: Kristin Ohlson
- The Nature and Properties of Soils – 14th Edition : Brady and Weil
- Journals of Lewis and Clark
- Buffalo Bird Women's Garden : Gilbert Wilson
- The One Straw Revolution: Masanobu Fukuoka
- Managing Cover Crops Profitably 3rd Edition
- A Sand County Almanac: Aldo Leopold
- Soil Biology Primer: by Elaine Ingham
- Life in the Soil: James Nardi
- An Agricultural Testament: Sir Albert Howard
- Dirt – The Erosion of Civilizations: David Montgomery
- Not Just Dirt: Kevin R. Elmy
- A Road To Fossil Fuel Free Farming: David Rourke
- Early Settlement of North Dakota: Clement Lounsberry
- 1491: Charles Mann
- The Soil – Human Health Nexus: Rattan Lal
- Civilization Critical: by Darrin Qualman
- What Your Food Ate: David Montgomery & Anne Bikle

www.menokenfarm.com

Click on the Learn tab.

YouTube Channel

Menoken Farm

Podcasts

Menoken Farm